Tencent ML-Images: A Large-Scale Multi-Label Image Database for Visual Representation Learning
نویسندگان
چکیده
منابع مشابه
Large-Scale Multi-Label Learning with Incomplete Label Assignments
Multi-label learning deals with the classification problems where each instance can be assigned with multiple labels simultaneously. Conventional multi-label learning approaches mainly focus on exploiting label correlations. It is usually assumed, explicitly or implicitly, that the label sets for training instances are fully labeled without any missing labels. However, in many real-world multi-...
متن کاملBelief Theory for Large-Scale Multi-label Image Classification
Classifier combination is known to generally perform better than each individual classifier by taking into account the complementarity between the input pieces of information. Dempster-Shafer theory is a framework of interest to make such a fusion at the decision level, and allows in addition to handle the conflict that can exist between the classifiers as well as the uncertainty that remains o...
متن کاملVideo Representation Learning and Latent Concept Mining for Large-scale Multi-label Video Classification
We report on CMU Informedia Lab’s system used in Google’s YouTube 8 Million Video Understanding Challenge. In this multi-label video classification task, our pipeline achieved 84.675% and 84.662% GAP on our evaluation split and the official test set. We attribute the good performance to three components: 1) Refined video representation learning with residual links and hypercolumns 2) Latent con...
متن کاملML-KNN: A lazy learning approach to multi-label learning
Multi-label learning originated from the investigation of text categorization problem, where each document may belong to several predefined topics simultaneously. In multi-label learning, the training set is composed of instances each associated with a set of labels, and the task is to predict the label sets of unseen instances through analyzing training instances with known label sets. In this...
متن کاملOnline Multi-Label Active Learning for Large-Scale Multimedia Annotation
Existing video search engines have not taken the advantages of video content analysis and semantic understanding. Video search in academia uses semantic annotation to approach content-based indexing. We argue this is a promising direction to enable real content-based video search. However, due to the complexity of both video data and semantic concepts, existing techniques on automatic video ann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2956775